
Collective Development of Large Scale Data Science Products
via Modularized Assignments: An Experience Report

Bhavya
University of Illinois at Urbana-Champaign

bhavya2@illinois.edu

Assma Boughoula
University of Illinois at Urbana-Champaign

boughou1@illinois.edu

Aaron Green
University of Illinois at Urbana-Champaign

aarongg2@illinois.edu

ChengXiang Zhai
University of Illinois at Urbana-Champaign

czhai@illinois.edu

ABSTRACT
Many universities are offering data science (DS) courses to fulfill
the growing demands for skilled DS practitioners. Assignments
and projects are essential parts of the DS curriculum as they en-
able students to gain hands-on experience in real-world DS tasks.
However, most current assignments and projects are lacking in
at least one of two ways: 1) they do not comprehensively teach
all the steps involved in the complete workflow of DS projects; 2)
students work on separate problems individually or in small teams,
limiting the scale and impact of their solutions. To overcome these
limitations, we envision novel synergistic modular assignments
where a large number of students work collectively on all the tasks
required to develop a large-scale DS product. The resulting product
can be continuously improved with students’ contributions every
semester.

We report our experience with developing and deploying such
an assignment in an Information Retrieval course. Through the
assignment, students collectively developed a search engine for
finding expert faculty specializing in a given field. This shows the
utility of such assignments both for teaching useful DS skills and
driving innovation and research. We share useful lessons for other
instructors to adopt similar assignments for their DS courses.

CCS CONCEPTS
• Social and professional topics → Information systems ed-
ucation; Information science education.

KEYWORDS
practical data science education; synergistic modular assignments;
experience report

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366961

ACM Reference Format:
Bhavya, Assma Boughoula, Aaron Green, and ChengXiang Zhai. 2020.
Collective Development of Large Scale Data Science Products via Mod-
ularized Assignments: An Experience Report. In The 51st ACM Techni-
cal Symposium on Computer Science Education (SIGCSE ’20), March 11–
14, 2020, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3328778.3366961

1 INTRODUCTION
Data Science is an emerging field and the demand for good data
scientists in the industry has been growing steadily. According
to the McKinsey Big Data Study, 2012 "... (in the next few years)
we project a need for 1.5 million additional analysts in the United
States who can analyze data effectively...". Many institutions have
started offering both undergraduate and graduate level courses in
Data Science (DS) to satisfy this growing demand. Universities are
also offering both online and on-campus degree programs in Data
Science to train a large number of students from all over the world
in these areas. The core objective of all these efforts is to teach
students how to extract knowledge from real-world or big data.

Previous studies on curriculum design for DS courses [16], [2],[14]
emphasize the importance of practical and application-based teach-
ing. In most courses today, this is achieved through assignments and
projects. However, assignments today focus on only a few DS tasks
such as Data Analysis and Model Development via Kaggle1-like
competitions. Broadly speaking, Data Collection, Data Analysis,
and Data Visualization are the three essential steps of deriving
insights from Big Data with Data Science[5]. Ideally assignments
should teach the three concepts cohesively so that students can
experience the complete workflow of real-world DS applications.
On the other hand, projects (e.g. Capstone Projects) are typically
required at the end of a course and the goal is to emulate real-word
DS projects. So, students usually work on all the 3 steps to com-
plete a project. But since mostly small teams work on one project,
the scale and impact of the resulting products is often limited. We
believe that if more students work collectively, more large-scale
innovative DS products can be developed.

To overcome the limitations of existing DS course assignments
and projects, we envision novel "synergistic modularized assign-
ments" to achieve the following main goals: Goal1: Foster large-
scale innovation and research by collective and iterative devel-
opment of a real-world DS product. Goal2: Each student should
comprehensively understand and work on most (if not all) steps
1https://www.kaggle.com/

https://doi.org/10.1145/3328778.3366961
https://doi.org/10.1145/3328778.3366961
https://doi.org/10.1145/3328778.3366961

involved in the complete workflow of the product. This means
that assignments should be decomposed into sub-tasks that can
be performed by a large number of students in parallel. Further,
an infrastructure is required to support the assignment where a
large number of students can perform computations on real-world
datasets.

We report our experience with designing and deploying such an
assignment in an upper-level course on introductory Text Mining
and Information Retrieval. The assignment enabled students to
collaboratively build an Expert Search Engine by completing four
synergistic individual assignments (plus one final project). They
also learned the complete workflow of building a search engine
including how to crawl data, evaluate ranking algorithms, improve
search engines, and develop a search engine interface. We con-
clude with analyzing student submissions and some lessons learned
during the experience.

2 RELATEDWORK
Traditional assignments inDS courses: Several works have doc-
umented example assignments and suggested best practices for
assignment design in DS courses. For example, in [9],[12] authors
provide example assignments and projects from their DS courses
in Statistics and Data Visualization courses respectively. Love et
al. [10] discuss what makes a quality assignment in Data Mining
and share a sample assignment using Open Data. However, cur-
rent assignments have a limited scope and are not typically geared
towards teaching innovation. Our assignment framework allows
students to learn the complete workflow of developing a novel
large-scale DS application by decomposing the development into
modules. Anderson et al. [2] also decompose large Data Science
programming assignments into sub-problems to scaffold students
through the learning process. However, the sample assignments
reported still have a small scope as each assignment covers the
implementation of one DS algorithm, such as Naive Bayes, which
is further broken down into sub-parts.

Techniques for teaching innovation in DS courses: Recently,
Datathons [3] or hackathons focused on data are used in DS courses
to drive innovation. Most hackathons often require collaboration
with companies or other organizations and typically have a very
short duration. Since such collaborations are not always feasible
especially over the long periods of time required to develop every
component of a DS product, our goal was to develop self-sustaining
assignments. Dinter et al. [6] perform a systematic study of teach-
ing data-driven innovation and emphasize the value of teaching
the complete workflow of building innovative products via semes-
ter long projects. However, they do not consider the scale of the
developed product which often suffers due to small team sizes in
projects. Our assignment enables a large number of students to
collectively innovate.

Platforms supporting DS research:Many platforms have been
developed to support DS research and innovation tasks. Notably,
Human Computing and Crowdsourcing [13] based platforms such
as AmazonMechanical Turk 2 enable large-scale data validation and

2https://www.mturk.com/

annotation by utilizing the collective skills of workers. However,
the goal is not to educate the workers. Platforms like Kaggle 3 that
run data science competitions are often used in DS education. But
there is no existing platform or framework that allows integration
of all the tasks in DS product development in a cohesive manner
for education. We use a cloud-based virtual lab based on CLaDS [8]
as it allows instructors to create such an integrated framework and
deploy it as an assignment.

3 ASSIGNMENT DESCRIPTION
We now describe how we designed, delivered and graded a syner-
gistic modular assignment that enabled students to build an Expert
Search Engine in our Text Mining and Information Retrieval course.

3.1 Overview
The assignment was designed for an upper-level course on Text
Mining and Information Retrieval. The course is targeted towards
upperclassmen and graduate students having good programming
skills. The core objective of the course is for students to learn how
to develop Search Engines and Intelligent Text Systems. A Cloud-
based virtual lab based on CLaDS [8] was previously developed to
deliver the course assignments.

During previous iterations of the course, one programming as-
signment was designed as a competition for students to develop
better ranking functions for text retrieval models using the MeTA
toolkit [11] with Python as the programming language 4. A web-
based leaderboard was maintained to report the performance of
student submissions (using evaluation metrics such as accuracy,
precision, etc.) on retrieval datasets such as the Cranfield dataset 5.
We extended this assignment into a comprehensive assignment for
developing an Expert Search Engine. The assignment was released
in Spring 2019 in a class with > 200 students.

As stated in Goal1, one goal is to build a large-scale DS product
that motivates students to innovate. The general idea is to select
any novel application relevant to a course and decompose its devel-
opment into multiple steps to be delivered as individual assignment
modules. We chose the problem of building an Expert Search En-
gine that would help find people with a given expertise of interest.
Such a vertical search engine is required as general purpose search
engines like Google do not perform well on this highly specialized
task. It would be useful for many use-cases such as prospective
students looking for advisors. Although there are some publicly
available expert finders such as ExpertiseFinder 6, FacFinder [7],
they often have limited scale or are not based on cutting edge re-
trieval algorithms. Our search engine would utilize the collective
efforts of the large number of students in our class both for creating
new data sets and improving dedicated retrieval algorithms.

To realize Goal2, we first identify instantiations of the 3 steps of
DS for developing a Search Engine application. Some of the major
tasks required to build a search engine application are web crawl-
ing and indexing, developing relevance judgements for evaluation,
and developing a web application for search ([17] provides detailed

3https://www.kaggle.com/
4https://github.com/meta-toolkit/metapy
5http://ir.dcs.gla.ac.uk/resources/test_collections/cran/
6https://expertisefinder.com/

Figure 1: Overall assignment design for developing a novel
Expert Search Engine application. The problem is decom-
posed into modules: (a)MP2.1, (b)MP2.2, (c)MP2.3, (d)MP2.4,
(e)Project. These correspond to the general stages of develop-
ing DS applications, namely, Data Collection, Analysis and
Visualization/Application Development. Arrows mean data
or algorithms developed in preceding modules are utilized

discussions on each concept). These correspond to Data Collection
(web crawling and indexing, annotating relevance judgements),
Data Analysis (developing and evaluating retrieval models), and
Application Development (developing search web-applications).
We emphasize that even though our assignment is Information Re-
trieval focused, it can be adapted for other data science sub-domains,
e.g Computer Vision, as these similarly instantiate the same high-
level stages of DS. The assignment (or Machine Problem; MP for
short) was divided into modules (MP2.1, MP2.3, MP2.4)7 to cover
one concept each. An additional module (MP2.2) was also released
to familiarize students with the MeTA toolkit. Since developing a
basic web application for search does not require a lot of effort,
we released this task as a project topic (Project) to be picked by
one team. A more collaborative approach involving more students
is certainly possible and can be considered in future revisions of
the assignment. The overall design is show in figure 1. We now
describe each module of the assignment in detail.

3.2 MP2.1
3.2.1 Objective. : The objective of MP2.1 was that each student
learns how to collect data through web scraping. Students crawl
faculty directory pages (often maintained by most universities) for
obtaining all faculty homepage links and scrape faculty homepages
to get accurate up-to-date expertise information.

3.2.2 Design. : Each student was tasked with collecting the faculty
information of one university using web scraping and parsing.
Faculty directories of all departments in a university tend to have
similar structures and thus require similar scrapers. To prevent
cheating and maximize learning, the first task was that each student
7The numbering scheme starts from 2.1 simply because this was the second assignment
in the course

choose a unique university and department and document it along
with the URL of the corresponding Faculty directory page in a
shared spreadsheet. For consistency and simplicity, students were
required to choose Englishwebpages of faculty in Computer Science
or an Engineering department.

The second task was for students to write Python scrapers with
two main functions, one to scrape the directory page and extract
faculty homepage URLs, and a second one to scrape all faculty home-
page URLs and extract the text from their Biographies(Bios). We
chose to use Bios only as a starting point as it is commonly available
in the form of a few paragraphs in most homepages. The students
were required to submit 2 output text files, one ’bio_urls.txt’ contain-
ing the list of all homepage URLs with one URL per line, and another
file ’bios.txt’ containing the corresponding list of Bios (again having
one Bio per line). Additionally, they were also required to submit
their code.

To further assist students, we provided sample scrapers in a
Jupyter8 notebook and the output files for the CS department faculty
of one university. We also provided links to tutorials and libraries
for webscraping with Python.

The assignment module was delivered using the GitLab platform
within our virtual lab. Students were given a week to complete it.

3.2.3 Grading and submission compilation. : Student submissions
were first downloaded using GitLab API9. In addition to checking
for completeness, i.e. submission of 2 text files and scraper, we
checked if the 2 files were correctly formatted. We programatically
checked if the files were not empty and if the number of URLs was
equal to number of bios assuming each new line in the file has one
URL (bio). We also checked if there was a significant overlap (>3
matching URLs) between the homepage URLs submitted by any
two students.

Finally, we compiled lists of all unique homepage URLs and
their corresponding bios from all student submissions and created
a search index using MeTA such that each document contained one
faculty bio. Only bios having more than 5 words were indexed.

3.3 MP2.2
3.3.1 Objective. : MP2.2 was aimed to familiarize students with
using the MeTA tool for search 10, specifically, building a search
index, using, creating and evaluating ranking functions in MeTA.

3.3.2 Design. : Students were asked to create an index for the Cran-
field dataset and implement the Inl2 function (an Inverse Document
Frequency model with Laplace after-effect and normalization first
introduced by [1]). A skeleton code and pointers to MeTA docu-
mentation were provided and the task was to fill in the missing
details. Additionally, students were asked to compare the Average
Precisions of two available MeTA retreival methods on the Cran-
field dataset using T-test 11 and submit the p-value in a file. It was
delivered using GitLab within our virtual lab. It was released after
MP2.1 and students were given one week to complete it.

8https://jupyter.org/
9https://python-gitlab.readthedocs.io
10https://github.com/meta-toolkit/metapy/blob/master/tutorials/2-search-and-ir-
eval.ipynb
11https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_rel.html

Figure 2: Screenshots of the Annotation tool used in MP2.3

3.3.3 Grading. A unit test was provided as a GitLab CI Pipeline
12 and grading was based on passing the pipeline. It checked if the
Mean Average Precision (MAP) of the student’s implementation
was close to the MAP of the instructor supplied implementation
on the Cranfield dataset. In this way, students received immediate
feedback on their implementation and could also make multiple
submissions. Additionally, we downloaded their submissions and
checked for the presence of a file containing a proper p-value (a
floating-point value between 0 and 1).

3.4 MP2.3
3.4.1 Objective. MP2.3 was aimed for students to learn how to
annotate relevance judgments for evaluating search engines based
on the Cranfield Evaluation Methodology[4]. The data set created
in this way is a new data set that also enables new research on
expert finding. In the future, with student permissions, we can
release such data to the research community.

3.4.2 Design. A web based annotation tool was developed within
our virtual lab as shown in Figure 2 . Given a query, the tool uses
Okapi BM25 [15] in MeTA with default parameters (k1=1.2, b=0.75,
k3=500) as the retrieval method and returns a list of top 20 docu-
ments (faculties) from index created from MP2.1 submissions as
shown in Figure 2. We did not have the faculty names, so we simply
used numbers to name the documents. Clicking on a document
opens a pop-up showing the associated faculty bio as shown in the
top-right corner of Figure 2.

Students were asked to log into the the tool and submit a query to
search for expert CS faculty in some area (e.g. "stanford text mining",
"computer vision") and evaluate whether the returned faculty bios
were relevant or not. They were asked to evaluate the results of at
least 1 query. After annotating 20 results for the query, they could
submit their judgments. All student queries and judgments were
saved in a database. To prevent many students from evaluating
the same query, we asked students to log their queries in a shared
spreadsheet. A maximum of 10 students were allowed to evaluate
the same query.

This module was also released after MP2.1 and students were
given 1 week to complete it.

12https://about.gitlab.com/product/continuous-integration/

3.4.3 Grading and submission compilation. Grading was based on
completion, i.e., evaluation of at least 1 query. This was imple-
mented by setting a flag in the database when a student submitted
their judgments for the first query. We also performed string match-
ing to check if the query was already used by >=10 other students
and the current student logged the same query in the spreadsheet
regardless. If so, the student was not awarded full points.

After releasing this module, we realized that some students might
not take the assignment seriously and submit incorrect or unreli-
able judgements. So, using all submitted judgments might create a
noisy data set for evaluating search retrieval methods. To bypass
this issue, we only used the judgments for queries evaluated by at
least 2 students. We used the rounded average of the all submitted
relevance judgements for a query so that the final judgment score
would still be binary.

3.5 MP2.4
3.5.1 Objective. The objective of the final module is for students
to learn to create and fine-tune retrieval methods for search.

3.5.2 Design. This part was designed as a search competition and
extended from a pre-existing assignment. It was delivered using
GitLab in our virtual lab. Only the Cranfield dataset was provided
to students for testing their retrieval methods locally. Their sub-
missions were evaluated using Normalized Discounted Cumulative
Gain at 10 (NDCG@10) scores against relevance judgments on 3
datasets: Faculty dataset compiled from MP2.1 submissions and
judgments from MP2.3 submissions, Cranfield, and APNews. The
idea was to emulate a real-world scenario where data scientists
often have to use different train and test sets and need to be wary of
bias-variance tradeoffs A weighted average of the NDCGs on the 3
datasets from the student’s latest submission was used as their final
score with highest weight given to scores on the Faculty dataset. A
leaderboard (Figure 3) and a supporting database were maintained.
Students were given 2 weeks to complete the assignment. Multiple
submissions were allowed.

3.5.3 Grading. We used Okapi BM25 with default parameters as
the baseline solution that each student was required to beat to
complete the assignment. A small extra credit was provided to a
few top ranked students for incentive. We directly used the database
for grading.

3.6 Project
Finally, we released the task of creating a web-application for the
search engine as a course project topic to be chosen by one team.
Specifically, we wanted the following features in the application:
1. Search by area of expertise 2. Filter results by university and
location of the university 3. Display the faculty name, email, link
to homepage and context snippets in search results 4. Allow an
instructor to upload any student’s code submission from GitLab
and use it for ranking the search results. In addition to creating
the interface, the project required developing simple methods for
extracting faculty names and emails from bios and finding univer-
sity locations from the university names entered in the spreadsheet
in MP2.1. They were provided with the top-ranking solution from

MP2.4 to use as the retrieval method for search. The project was
graded manually based on completion.

4 STUDENT SUBMISSIONS ANALYSIS
We now report details on students’ submissions from the main
modules discussing whether students were able to complete the
assignment successfully and if/how their submissions cumulatively
created the Faculty Expert Search Engine.

MP2.1: A total of ≈ 6500 unique faculty homepage URLs from
139 universities accross 6 countries were collected fromMP2.1. This
is already much larger than the homepage URLs manually collected
in existing related work [7]. Each faculty bio is a few KBs in size
resulting in a total collection of size 40 MB. Even though the size
of collected data is relatively small as we only asked students to
collect the bios, we believe that the 6.5k homepage URLs collected
is a very valuable resource it can be used as a base to crawl more
information, e.g. publications and Google Scholar profile, in future
offerings. Moreover, the submitted scraper scripts can be used to
periodically refresh the index to get up-to-date faculty information.

Almost every student completed the assignment successfully,
<10% of them lost points due to ill-formatted file submissions.

MP2.2: The goal of MP2.2 was only to familiarize students with
the MeTA toolkit and they were able complete this module success-
fully. We are not providing a more detailed analysis here as it is
not integral to the search engine application or synergistic modular
assignments in general.

MP2.3: A total of ≈ 110 unique queries were annotated, thus
giving us ≈ 2k total relevance judgments. Out of these only ≈ 35
queries were annotated by at least 2 students. This significantly
reduced the number of relevance judgments used for evaluating
the search engine in MP2.4. But we made this decision to ensure
that a reliable dataset was used for evaluating the retrieval methods
as mentioned in 3.4.3. Only 1 query, "natural language processing",
was evaluated by the maximum allowed number (10) of students.

All queries were short (between 1 and 3 words) and covered
broad fields in Computer Science e.g. blockchain, machine learning.
This, in general, meant that queries were quite easy and even simple
solutions, like our baseline method without any parameter tuning,
achieved a very high NDCG@10 score of 0.93 on the relevance
judgments from 35 queries.

MP2.4: All but 3 students beat the baseline solution indicating
they were able to get a good grasp on building and fine-tuning
retrieval methods. Additionally, consistent with [8], we found stu-
dents were highly engaged with 50% students submitting more
than 12 times after assignment completion. After the assignment,
many students were interested in knowing the strategies used by
top rankers which lead to a very active discussion thread on our fo-
rum. Students shared that they experimented with various retrieval
methods but found that fine tuning Okapi BM25 worked the best.

It is interesting that the top ranking solution did not have the
best NDCG@10 on the Faculty dataset individually as noticed in
Figure 3 even though this dataset was given the highest weight
while ranking submissions. This indicates that the Faculty dataset
might be quite different from Cranfield/APNews datasets. In future,
we will consider generating train/test sets from the Faculty dataset
alone to facilitate development of a dedicated retrieval method.

Project: A team of 4 students developed a fully functional Fac-
ulty Expert Search engine as show in Figure 4 with all desired
features listed in Section 3.6. Figure 4 (a) shows features 1-3 and
4 (b) shows feature 4. They developed the website using Python
Flask 13 and Javascript. They used regexes to extract emails, and
Named Entity tagging 14 to extract faculty names. Further, they
used Google Maps API 15 to get the locations of universities. GitLab
API was used to upload a given student’s code submisson identified
by their GitLab project ID.

5 LESSONS LEARNED AND CHALLENGES
As discussed in Section 4, the synergistic modular assignment en-
abled students to drive innovation as they created a fully functional
Expert Search Engine. Moreover, students created two new datasets,
one with faculty bios and URLs, and another one with relevance
judgments. These new datasets are valuable since they enable new
research of expert retrieval algorithms. Also, the high completion
rate of all assignment modules and the development of the final ap-
plication as mentioned in Section 4 both indicate that the students
learned all the steps involved in the complete workflow of the DS
application. So, we were able to achieve both Goal1 and Goal2 as
planned, and such a new model of synergistic modular assignments
is not only feasible, but has also worked well.

Althoughwe have only experimented with the idea in one course,
the methodology we have used can also be adapted to deploy sim-
ilar assignments in other courses in Data Science. Based on our
experience, we can make the following recommendations for any
design of such assignments in the future.

1. Use a cloud-based virtual lab: Having a shared infrastruc-
ture like CLaDS for delivery and grading of all assignment modules
and hosting all the student code repositories and large datasets
makes it convenient for both students and instructors to collabora-
tively work on such large assignments.

2. Build the new assignment upon existing assignments:
Developing a large assignment with multiple modules can be time
consuming. Extending an existing assignment allowed us to reuse
its parts including grading and delivery, and reduce the time re-
quired to develop the new assignment.

3. Choose novel problems familiar and interesting to stu-
dents: The data science application chosen for the assignment
should be interesting to students so that they are engaged and mo-
tivated to develop better solutions. At the same time, the problem
domain should be familiar to students so that there is minimal
learning curve. In our case, finding expert faculty for choosing ad-
visors was a relevant problem for students and the CS/engineering
domain was especially familiar to them. The problem had a low
entry barrier; students knew how to find university websites and
were able to judge whether a faculty bio was relevant to their query.

4. Design assignment modules carefully: Firstly, the prob-
lem chosen should be decomposed into modules that cover the 3
main steps of data science. Further, each module should be care-
fully designed such that each student works on a task of similar
complexity to ensure fairness. Although each student should work

13https://flask.palletsprojects.com/en/1.0.x/quickstart/
14https://www.nltk.org/_modules/nltk/tag/stanford.html
15https://developers.google.com/places/web-service/intro

Figure 3: Screenshot of leaderboard in MP2.4

(a) (b)

Figure 4: Screenshots of the Faculty Expert Search Engine

towards the same overall objective of the module, there should
be minimum overlap between the actual task performed by each
student to minimize cheating, maximize individual learning and
maximize the diversity and scale of the resulting work. For example,
in MP2.1, each student scraped a unique university listing.

5. Assignmentmodulesmay be updated every semester to
iteratively enhance the product: To allow vertical growth of the
product, the same modules may be released every semester. The
students would be asked to perform the same steps every semester:
collect new data, and refine the data, models and application accord-
ingly. New features and required improvements can also released as
additional modules or potential project topics. For example, we plan
to release more project topics in upcoming semesters to improve
the extraction of faculty names and emails from bios.

We also faced some challenges that may be used as additional
considerations while designing such assignments:

1.More stringent grading and requirementsmight be needed
to ensure development of accurate and high-quality prod-
ucts: Since the final DS product is developed entirely from student
submissions, it is important that their work is of high-quality and
reliable. For example, as mentioned in Section 4, we couldn’t use all
the relevance judgments collected since they could be unreliable. In
future revisions, we could inject a few known non-relevant bios (e.g.
faculty bio from a very different department) at random positions in
the returned results. Only students that correctly mark the injected
bios as non-relevant would get full score ensuring that students
carefully go through each result.

2. Extensive documentation should be maintained to sus-
tain the assignment over time: Students should be able to easily

understand previous work to build upon it in subsequent course
offerings. Instructors and students could collaboratively maintain
the documentation through sites like Wiki. Students should also be
asked to follow standard coding styles.

6 CONCLUSION
In this paper, we proposed novel synergistic modular assignments
for data science courses. The overall idea is to decompose the devel-
opment of a novel application related to a data science course into
assignment modules and have students work collaboratively on
each module. Unlike existing DS assignments and projects which
have limited scope and impact, such assignments enable students
to collaboratively participate in and learn the complete workflow
of building a large scale novel DS product.

We shared our experience with deploying such an assignment
in a large class of over 200 students. Our experience shows that
carefully choosing the data science problem, decomposing it into
well-designed modules and supporting the assignment with a suit-
able cloud-based infrastructure enables students to achieve the
desired goals and creates an engaging learning experience. As we
have only tested the assignment over one semester, there are still
some existing challenges about sustaining and improving the as-
signment and the developed DS product reliably over time. Finally,
even though we share our experience with developing a Search
Engine in an Information Retrieval course, since the development
of products in other data science sub-domains can be broken into
the three main steps, namely Data Collection, Analysis, and Appli-
cation Development, similar modular assignments can be adapted
by other data science courses too.

7 ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1801652

REFERENCES
[1] Gianni Amati and Cornelis Joost Van Rijsbergen. 2002. Probabilistic models of

information retrieval based on measuring the divergence from randomness. ACM
Transactions on Information Systems (TOIS) 20, 4 (2002), 357–389.

[2] Paul Anderson, James Bowring, Renée McCauley, George Pothering, and Christo-
pher Starr. 2014. An undergraduate degree in data science: curriculum and a
decade of implementation experience. In Proceedings of the 45th ACM technical
symposium on Computer science education. ACM, 145–150.

[3] Craig Anslow, John Brosz, Frank Maurer, and Mike Boyes. 2016. Datathons: an
experience report of data hackathons for data science education. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education. ACM,
615–620.

[4] Cyril W Cleverdon, Jack Mills, and E Michael Keen. 1966. Factors determining
the performance of indexing systems,(Volume 1: Design). Cranfield: College of
Aeronautics (1966), 28.

[5] Ben Daniel. 2015. B ig D ata and analytics in higher education: Opportunities
and challenges. British journal of educational technology 46, 5 (2015), 904–920.

[6] Barbara Dinter, Christoph Kollwitz, and Albrecht Fritzsche. 2017. Teaching data
driven innovation–facing a challenge for higher education. (2017).

[7] Yi Fang, Luo Si, and Aditya Mathur. 2008. Facfinder: Search for expertise in
academic institutions. Department of Computer Science, Purdue University, Tech.
Rep. SERC-TR-294 (2008).

[8] Chase Geigle, Ismini Lourentzou, Hari Sundaram, and ChengXiang Zhai. 2018.
CLaDS: a cloud-based virtual lab for the delivery of scalable hands-on assignments
for practical data science education. In Proceedings of the 23rd Annual ACM

Conference on Innovation and Technology in Computer Science Education. ACM,
176–181.

[9] Johanna Hardin, Roger Hoerl, Nicholas J Horton, Deborah Nolan, Ben Baumer,
Olaf Hall-Holt, Paul Murrell, Roger Peng, Paul Roback, D Temple Lang, et al.
2015. Data science in statistics curricula: Preparing students to âĂĲthink with
dataâĂİ. The American Statistician 69, 4 (2015), 343–353.

[10] Matthew Love, Charles Boisvert, Elizabeth Uruchurtu, and Ian Ibbotson. 2016.
Nifty with data: can a business intelligence analysis sourced from open data form
a nifty assignment?. In Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 344–349.

[11] Sean Massung, Chase Geigle, and ChengXiang Zhai. 2016. Meta: A unified toolkit
for text retrieval and analysis. In Proceedings of ACL-2016 System Demonstrations.
91–96.

[12] Deborah Nolan and Jamis Perrett. 2016. Teaching and Learning
Data Visualization: Ideas and Assignments. The American Statistician
70, 3 (2016), 260–269. https://doi.org/10.1080/00031305.2015.1123651
arXiv:https://doi.org/10.1080/00031305.2015.1123651

[13] Alexander J Quinn and Benjamin B Bederson. 2011. Human computation: a
survey and taxonomy of a growing field. In Proceedings of the SIGCHI conference
on human factors in computing systems. ACM, 1403–1412.

[14] Bina Ramamurthy. 2016. A practical and sustainable model for learning and
teaching data science. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 169–174.

[15] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[16] Il-Yeol Song and Yongjun Zhu. 2016. Big data and data science: what should we
teach? Expert Systems 33, 4 (2016), 364–373.

[17] ChengXiang Zhai and Sean Massung. 2016. Text data management and analysis:
a practical introduction to information retrieval and text mining. Morgan &
Claypool.

https://doi.org/10.1080/00031305.2015.1123651
http://arxiv.org/abs/https://doi.org/10.1080/00031305.2015.1123651

	Abstract
	1 Introduction
	2 Related Work
	3 Assignment Description
	3.1 Overview
	3.2 MP2.1
	3.3 MP2.2
	3.4 MP2.3
	3.5 MP2.4
	3.6 Project

	4 Student submissions analysis
	5 Lessons Learned and Challenges
	6 Conclusion
	7 Acknowledgments
	References

